

Senior Design Project
Musync

Final Report

Ahmet Çandıroğlu, Anıl Erken, Berk Mandıracıoğlu, Halil İbrahim Azak

Supervisor: ​Assoc. Prof. Dr. M. Mustafa Özdal
Jury Members:​ Prof. Dr. Özcan Öztürk, Prof. Dr. Cevdet Aykanat

Final Report May 9, 2019

This report is submitted to the Department of Computer Engineering of Bilkent University in partial fulfillment of the

requirements of the Senior Design Project II course CS492.

Table of Content
Table of Content 2

1. Introduction 4
1.1 Object design trade-offs 4

1.1.1 Usability vs. Functionality 4
1.1.2 Efficiency vs. Accuracy 5
1.1.3 Security vs. Usability 5
1.1.4 Reliability vs. Compatibility 5

1.2 Interface documentation guidelines 5
1.3 Engineering standards 6
1.4 Definitions, acronyms, and abbreviations 6

2. Final Architecture and Design 7
2.1 Subsystem Decomposition 7

2.1.1 Server Side 7
2.1.1.1 Model 7
2.1.1.2 Controller 10

2.1.2 Client Side 11
2.1.2.1 View 11

2.2 Class Interfaces 12
2.2.1 Server Side 12

2.2.1.1 Model 12
2.2.1.2 Controller 19

2.2.2 Client Side 22
2.2.2.1 View 22

3. Impact of Engineering Solutions 26
3.1 Social Impact 26
3.2 Economic Impact 26

4. Contemporary Issues 27

5. Tools and Technologies Used 28
5.1 Node.js 28
5.2 Express.js 28
5.3 MongoDB 28
5.4 React.js 28
5.5 Material-UI 28
5.6 GitHub 29
5.7 Heroku 29
5.8 Axios 29

2

5.9 React-Select 29
5.10 React-Google-Maps 29
5.11 React-FontAwesome 29

6. Final Status of the Project 30

References 31

3

1. Introduction

Music is a common interest that many people enjoy and rest their souls. It may become a

cumbersome procedure to find music that many people enjoy. In our daily lives, we are

surrounded with music by means of our environment such as restaurants, cafes, bars, etc.

Therefore, it is even more important to create a suitable playlist to satisfy majority based on

their collective music taste. It is also necessary to recommend new places that people might

enjoy according to their music taste and even discover new songs.

The main purpose of this system is to let people choose what they listen according to their

music taste in public places such as cafes and bars. Musync aims to facilitate creation of

playlists that are dynamically modified by both analysing the music tastes of users and their

feedback on the current playlist. Musync is basically an automated digital jukebox which

collects data about people’s music tastes from its current users and initialises a playlist. The

playlist is dynamic and changes as people come on go so that everybody can listen what

they generally like. Moreover, users are able to add songs to the playlist and have a chance

to choose the next song by the power of bidding. Also, users are able to see nearby

locations along with their music preferences, so they can choose where they want to hang

out.

This report describes the low-level architecture and the design of the Musync. Report

comprises Object design trade-offs, Engineering standards, Packages and Class interfaces

sections. Finally, the report is concluded with the class diagrams and the detailed

explanations of software components.

1.1 Object design trade-offs

1.1.1 Usability vs. Functionality

In Musync, our first goal is usability. Firstly, we want our users to start using it without any

annoying, time consuming processes like downloading an app and registration. Then, we will

provide a clean and simple menu that user will know how to use it at first sight, and fast

navigation to make it easy to use. Therefore we will not implement too much functionality

that will lead to complex, slow menus and make the application difficult to quickly

understand. Even registration is not required, since we think that aim of our app is simple

4

and users don’t want to spend too much time for that. That’s why we want to keep it “as

simple as possible, but not simpler”.

1.1.2​ ​Efficiency vs. Accuracy

One of our goals it to make a common playlist for each place which contains songs from

different users’ playlists. This procedure will be repeated for each place throughout the day

and can be very difficult to compute when there are many users. Also, the playlist will be

dynamic as it will be altered for each user. For these reasons, we aim to have an efficient

algorithm instead of a highly accurate one.

1.1.3 Security vs. Usability

While high level of usability is one of our goals, we needed to lose some usability to provide

more security. As in real life or any other field, being more secure may require sacrificing

some conveniences. An example of this is ending sessions of users after a time of inactivity.

We determined this duration to be not too long to prevent both an unintended person

accessing to a user’s account on a device after the actual user stopped using it and also an

ill intentional user continuing to affect the music flow of place long after leaving the place.

This will require users to reconnect to the place if they stayed inactive long enough for their

session to expire.

1.1.4 Reliability vs. Compatibility

Musync aims to provide a robust and reliable system where users can enjoy the music

experience without any system crashes. Moreover, if the system is allowed to be compatible

with more than one OS then the rate of failures and maintenance would increase and

therefore the system could potentially be interrupted more than necessary. The ambition of

Musync is to provide the optimal user experience and satisfaction, thus a reliable system has

the utmost priority.

1.2 Interface documentation guidelines

In this report; all classes, attributes and methods are named in the camel case format. Class

names start with a capital letter, while others start with lowercase. Class interface

descriptions are given in the following format:

5

class ClassName

Explanation of the class

Attributes

typeOfAttribute nameOfAttribute

Methods

returnType methodName(parameters)

Method explanation if necessary

1.3 Engineering standards

We have used the UML guidelines in this report for the class interfaces, diagrams,

scenarios, subsystem compositions [1]. UML is a commonly used way to generate these

diagrams, easy to use and since it is the method taught at Bilkent University, we chose to

utilize it in the following pages. The report follows IEEE’s standards for the citations [2].

Once again, this is a commonly used method and it is the preferred one in Bilkent University.

1.4 Definitions, acronyms, and abbreviations

API: Application Programming Interface.

MVC: Model View Controller architecture.

UI: User Interface.

6

2. Final Architecture and Design
In this section the subsystem decomposition, subsystem services, client and server
architectures are demonstrated.

2.1 Subsystem Decomposition

2.1.1 Server Side

2.1.1.1 Model
Model system is responsible for storing, accessing and managing data. Database

connection and interactions with the database are handled in this subsystem. Model

subsystem consists of Database Management classes, Data Cache classes and finally

Object Modelling classes. Database Management classes encapsulate database

interactions. They establish and control database connection and provide functionalities to

store and manage data.

Data Cache classes are responsible for storing and managing database objects during the

use. Frequently used database objects are cached and served from cache to decrease load

on database and gain performance.

Object Modelling classes are responsible for providing an easy to use interfaces for types of

objects and data structures stored in database. Retrieving, storing, providing and validating

data are managed automatically with these classes. Object Modelling classes hide

interactions with database and Data Cache classes from users of the Object Modelling

classes to satisfy Abstraction and Encapsulation principles of Object Oriented Programming.

7

Figure 1: Model package

User:​ This class is the base class of all user types. It has the basic attributes such as

password, id, location, last login date informations. Moreover, ​User ​has the points attribute in

order to enable the visitor to bid on music. ​User ​has visited places and requested songs

attributes in order to keep track of the visitor activity and increase points if the visitor is a

regular visitor of the place. Aforementioned attributes serve as necessary data to make

place recommendations to the user.

RegisteredUser: ​This class inherits ​User ​class. ​Users ​that registered through either email or

Spotify will be a registered user. Registered users will be able to create and control places.

To allow this functionality, ​RegisteredUser ​stores user information such as email and Spotify

auth token, and place related information such as owned places and premium account

information.

Place:​ This class represents places. A place in the context of this report is a point on earth

that has a shared list of songs that people can participate in controlling if they are in required

proximity of the point. Musync allows both commercial place owners and individual users to

create such a place and share their list. A ​Place ​needs a name, a location represented by

8

Location ​class and a shared playlist represented by ​Playlist ​class. This class also stores

other data like pin to connect, votes for songs, records of previously played songs to provide

functionalities Musync offers.

PermanentPlace:​ This class inherits the ​Place ​class. Owners of commercial places can

create permanent places that can provide service continuingly. Also a permanent place can

have a list of allowed music genres to both guide customers on what to expect and restrict

the type of music requested by customers.

VisitedPlace:​ This class represents a record of a user visiting a place. It stores the place,

the user and the date of visit to provide users with data like their previous visits.

Song: ​This class represents the songs as an entity in the entire system. It has the basic

attributes (duration, genre, name, etc.) and the functionalities to make the system work and

play music. Whenever a song is searched, added or requested to the system an instance of

this class will be created.

RequestedSong: ​This class is basically a different representation of a ​Song ​instance such

that it has a date, a place and user associated with it. It is the most essential entity of the

system. Whenever a user requests a song, an instance of this class is initiated and assigned

to a playlist. Later, users can bid on requested songs to play them as next ​Song ​which is

SongRecord ​class.

SongRecord: ​This class represents songs that are played in a place. An instance of this

class is initiated whenever a novel song is played in the playlist of a place. This class keeps

track of the statistical information about songs so that when a user views a place they can

see the genres of songs played in a place and trending songs.

SpotifyItem: ​This class stores data corresponding to Spotify counterparts of items like

songs and playlists.

SpotifyConnection: ​This class stores Spotify connection related data.

Playlist: ​This class represents Spotify playlist of the ​Place​. Requested songs will be added

to the instance of this class and next songs will be selected from those songs.

Genre: ​This class represents genre of music and will be compatible with genres on Spotify

(e.g. Metal, Rock). This class is used to determine genres of ​Songs ​and ​Places.

9

Location: ​This class represents physical location of ​Places ​and ​Users. ​This class will be

used to determine in which ​Place​, ​Users ​are. Also, this class will be compatible with ​Google

Maps ​as we will be using it as main location data source.

2.1.1.2 Controller

Controller subsystem are responsible for providing a connection between Model and

Frontend (View) of the project. Controller subsystem consists of router classes that handle

requests made to server and utilization classes that provide additional functionalities like

communicating with Spotify Web API.

Router classes handle requests made to the server. The backend server designed and

developed based on REST API principles. Main logic of the backend of the project is

controlled through these router classes with a request-driven approach. Router classes

communicate with Model subsystem and/or Spotify to serve the data Frontend requires.

Utilization classes provide additional functionalities to other Controller classes such as

handling data updates and Spotify Web API functionalities and not communicated directly

from View subsystem. Controller class for Spotify handles the communication between other

classes and Spotify Web API.

MainController​ : This class is responsible for managing the input received from the user

and collect necessary information to be displayed to user. This class utilizes other controller

classes in order to convey the user information about places, playlist, songs and their

account. This class is the essential element of the system in order to maintain information

flow between user and system.

UserController: ​This controller class is responsible for doing user specific operations like

register and login.

PlaceController: ​This class is responsible for creating a new place and joining user to a

place.

SpotifyController:​ This controller class is responsible for providing functionalities to

communicate with Spotify.

LocationController: ​This class will be communicating with ​Google Maps API ​to determine

locations of ​Users ​and ​Places ​and handling location related issues.

10

2.1.2 Client Side

2.1.2.1 View

Figure 3: View package

UserProfileView: ​This view class will show details of the ​User​ and will be common for all

kinds of users. However, details will be shown differently for different kinds of users. For

instance, ​RegisteredUsers ​will be able to see and modify their email, password and Spotify

information.

UserSettingsView: ​This view class will show details of ​User ​information and let them

change their information such as password or Spotify account.

Place: ​This class will show the general information about a place such as the location so

that users can see whether that place is nearby. Moreover, users will be able to see if the

place has more than one branch by viewing their owner.

11

PlaceProfileView: ​This class will represent detailed information about a place so that a user

can have an overall idea about the music taste of that place. Users are able to view the

trending songs and general music genres of the place.

PlaceMusicFlowView: ​This view class will show user the music flow of the place he/she

joined. It will display the currently playing song, the songs that are being voted to play next,

their votes and ending time of the voting.

PlaylistView: ​This view class will display the current playlist of the place.

SongSearchView:​ This view class will be used for displaying the results of song search.

PlaceSearchView:​ This view class will be used for displaying the results of place search.

2.2 Class Interfaces

2.2.1 Server Side

2.2.1.1 Model

class User

This class is the base class of all user types. It has the basic attributes such as password,

id, location, last login date informations. Moreover, User has the points attribute in order to

enable the visitor to bid on music. User has visited places and requested songs attributes

in order to keep track of the visitor activity and increase points if the visitor is a regular

visitor of the place. Aforementioned attributes serve as necessary data to make place

recommendations to the user.

Attributes

private int id

private String name

private Date lastLogin

private int points

private Location location

12

private List<VisitedPlace> visitedPlaces

private List<RequestedSong> requestedSongs

Methods

Getter and setter methods.

class RegisteredUser

This class inherits User class. Users that registered through either email or Spotify will be

a registered user. Registered users will be able to create and control places. To allow this

functionality, RegisteredUser stores user information such as email and Spotify auth

token, and place related information such as owned places and premium account

information.

Attributes

private SpotifyConnection spotifyConnection

private String email

private String password

private Date premiumEnd

private List<Place> places

private int premiumTier

Methods

Getter and setter methods.

class Place

13

Stores data related to places with shared lists.

Attributes

private int id

private String name

private SpotifyConnection spotifyConnection

private int pin

private Song[] votedSongs

private int[] votes

private Location location

private Playlist playlist

private SongRecord[] songRecords

private int initialPoint

Methods

Getter and setter methods

class PermanentPlace extends Place

Places that are permanent, like restaurants.

Attributes

private Genre[] genres

Methods

Getter and setter methods

14

class VisitedPlace

Stores record of a user visiting a place at a date.

Attributes

private DateTime date

private int visitCount

private PermanentPlace place

Methods

Getter and setter methods

class Song

Stores data related to songs.

Attributes

private String name

private int duration

private List<Genre> genres

private SpotifyItem spotifySong

private String songUri

private String artistName

Methods

Getter and setter methods

class RequestedSong

15

Stores data related to requested songs.

Attributes

private Song song

private Date date

private PermanentPlace place

Methods

Getter and setter methods

class SongRecord

Stores data related to played songs.

Attributes

private Song song

private int listenCount

Methods

Getter and setter methods

class SpotifyItem

This class stores data corresponding to Spotify counterparts of items like songs and

playlists.

Attributes

private String id

private String uri

16

private String name

private String description

Methods

Getter and setter methods

class SpotifyConnection

This class stores Spotify connection related data.

Attributes

private String accessToken

private String refreshToken

private int expiresIn

private String userId

Methods

Getter and setter methods

class Playlist

This class represents Spotify playlist of the ​Place​. Requested songs will be added to the

instance of this class and next songs will be selected from those songs.

Attributes

private int id

private List<Song> songs

private int currentSong

17

private Date currentSongStartTime

private SpotifyItem spotifyPlaylist

private boolean isPlaying

private String snapshotId

Methods

Getter and setter methods

class Genre

This class represents genre of music and will be compatible with genres on Spotify (e.g.

Metal, Rock). This class is used to determine genres of ​Songs ​and ​Places.

Attributes

private int id

private String name

Methods

Getter and setter methods

class Location

This class represents physical location of ​Places ​and ​Users. ​This class will be used to

determine in which ​Place​, ​Users ​are. Also, this class will be compatible with ​Google Maps

as we will be using it as main location data source.

Attributes

private double latitude

private double longtitude

18

private String district

private String city

private String country

Methods

Getter and setter methods

2.2.1.2 Controller

class MainController

Handles requests made for Spotify API from View

Attributes

private UserController userController

private PlaceController placeController

private SpotifyController spotifyController

Methods

public List<String> searchSong()

Searches song names sent with request

public String addSong()

Adds song to specified playlist

public List<String> allPlaces()

Returns combined information for all places

class UserController

This controller class is responsible for handling user specific requests like register and

login.

Attributes

19

Methods

public User getUser()

public String checkConnection()

public String registerUser()

public String loginUser()

public String updateUser()

public String logoutUser()

public String connectSpotify()

public List<String> getUserHistory()

public List<String> getUserPlaylists()

public List<String> getRecommendedPlaces()

class PlaceController

This class is responsible for handling requests related to places such as creating a new

place and joining user to a place.

Attributes

Methods

public String createPlace()

public String getPlace()

public String getPlaylistOfPlace()

public String changePlaceSettings()

public String connectToPlace()

20

public String getPlaybackInfo()

public String getVoteStatus()

public String voteForSong()

class SpotifyController

This class provides functionalities to communicate with Spotify Web API.

Attributes

Methods

public String reorderTrack()

public String addSong()

public String removeSong()

public String playSong()

public String searchSong()

public String searchArtist()

public String getLibrary()

public SpotifyConnection getSpotifyConnection()

public SpotifyConnection refreshSpotifyConnection()

public String getCurrentUser()

public List<String> getPlaylists()

public String getPlaylist()

public String createPlaylist()

public String getSong()

21

public List<String> getFavouriteTracks()

public String getAlbum()

public String getArtist()

public String getCurrentlyPlaying()

public String parseSpotifyResponse()

class UpdateController

This class is responsible for controlling regular updates to data.

Attributes

Methods

public int updatePlaylist(String placeId)

2.2.2 Client Side

2.2.2.1 View

class UserProfileView

This view class will show details of the ​User​ and will be common for all kinds of users.

However, details will be shown differently for different kinds of users. For instance,

RegisteredUsers ​will be able to see and modify their email, password and Spotify

information.

Attributes

private int id

private DateTime premiumStartDate

private DateTime premiumEndDate

private Map<Place, Integer> visitHistory

22

private Map<Song, Place> requestHistory

private List<Place> recommendedPlaces

Methods

private void goToUserSettingsView()

class UserSettingsView

This view class will show details of ​User ​information and let them change their information

such as password or Spotify account.

Attributes

private int id

private String spotifyId

private String email

private DateTime premiumStartDate

private DateTime premiumEndDate

Methods

private void changeEmail()

private void changeSpotifyAccount()

private void removeSpotifyAccount()

private void subscribeToPremium()

class PlaceMusicFlowView

23

This view class will show user the music flow of the place he/she joined. It will display the

currently playing song, the songs that are being voted to play next, their votes and ending

time of the voting.

Attributes

private String currentlyPlaying

private String[] nextSongs

private int[] nextSongVotes

private int voteEndingTime

class PlaylistView

This view class will display the current playlist of the place.

Attributes

private int playlistId

private List<Song> songs

private int currentSongNumber

class SongSearchView

Stores search term and the results of song search.

Attributes

private String searchTerm

private SpotifyItem[] results

24

class PlaceSearchView

Stores search term and the results of place search.

Attributes

private String searchTerm

private String[] results

private int[] resultIds

class Place

This class will show the general information about a place such as the location so that

users can see whether that place is nearby. Moreover, users will be able to see if the

place has more than one branch by viewing their owner.

Attributes

private int placeId

private int spotifyId

private String name

private String address

private double[] coordinates

private boolean isUserOwner

class PlaceProfileView

25

This class will represent detailed information about a place so that a user can have an

overall idea about the music taste of that place. Users are able to view the trending songs

and general music genres of the place.

Attributes

private Place place

private String[] preferredGenres

private String[] popularSongs

3. Impact of Engineering Solutions
In this section social and economic impacts of Musync is discussed.

3.1 Social Impact
Music industry has grown so dramatically that the music trends and market is changing
constantly. Therefore, people are in constant search for music that they prefer. Some
applications such as Shazam enables users to discover the music that is played in their
environment however, such applications depends on the sound quality and if there are noise
they do not find the music accurately. Musync enables users to interact with the music and
increase their possibility to find new music that cater to their music interests. Users can
directly view the playlist of a place from their mobile devices and make modifications such as
adding a new song. Moreover, users are able to control the music they are exposed to such
that they have a better music experience anywhere. As a result users are satisfied and have
an amazing music experience while enjoying their favorite coffee or food in their favorite
restaurants.

 On the other hand, Musync facilitates the generation of playlist by creating and modifying a
playlist from the user’s music preferences automatically. Therefore, place owners need not
to be worried whether their customers will like their playlist because it is all covered by
Musync.

3.2 Economic Impact
Musync creates a new branch of industry where music is shared more openly. As a result,
the producers that joined to music industry recently can potentially grow faster by introducing

26

their music to the users through Musync. They can even get feedback from users because if
they seem to like it they would vote for their song to be played next. Therefore, Musync
enables music producers to share their music easier.
Moreover, the place owners can potentially profit from Musync because their place would
stand out among other places since users would have better music experience and be a
loyal customer. Place owners can also sell extra vote credits to users and profit.

4. Contemporary Issues
In this section the privacy issues are discussed which is an important and delicate part of the

application.

The following are the list of permission that Musync has over a spotify account.

● Your email

● Your public playlists

● Playlists you’ve made and playlists you follow

● What you’ve saved in Your Library

● The type of device you’re listening on

● Your top tracks and artists

● The track you’re playing

● Add and remove items in Your Library

● Create, edit, and follow playlists

● Create, edit, and follow private playlists

● Control Spotify on your devices

Moreover, Musync asks for location data of a user to be used to connect to a place. Location

data consists of geographical position (longitude and latitude) of user.

Musync application does not use visitor users’ Spotify connection for operations that require

modification permissions. It is only used for reading data to determine a good selection of

tracks for user through accessing data such as favorite tracks of the user. Furthermore, all

the information gathered for this purpose is not stored in any way after use. Musync respects

privacy of its users and doesn’t store and share any data that is not publicly available.

For the place owners, permission to modify user data such as playlists is required. Musync

does not use or store any unnecessary data. The control Musync has over the Spotify

account connected to place is only over the playlist that is either created by Musync or

selected by the owner. Users also are suggested to use a separate, institutional Spotify

accounts for their controlled places. It should also be noted that communication with Spotify

27

requires secret authorization tokens and made over a secure connection, preventing access

from third parties.

Location data acquired from user is only used and stored when a user wants to connect to a

place. Musync doesn’t gather or use Location data for any other purpose and previous data

of a user is not stored to provide privacy.

5. Tools and Technologies Used

5.1 Node.js
Node.js is a server application that supports JavaScript as a language [3]. It is widely used
for applications based on REST principles.

5.2 Express.js
Express.js is a web application framework for Node.js [4]. Express.js provides ready-to-use
functionality for common use cases such as handling requests made to a web server and
managing user sessions.

5.3 MongoDB
MongoDB is a NoSQL database [5]. A NoSQL database is a non-relational database that
allows more freedom in in the structure of data. MongoDB is a widely used database that
also provides driver for connecting to database and managing data in JavaScript
programming language.

5.4 React.js
React is a JavaScript library for building user interfaces. It is maintained by Facebook and a
community of individual developers and companies [6].

React can be used as a base in the development of single-page or mobile applications, as
it's optimal only for its intended use of being the quickest method to fetch rapidly changing
data that needs to be recorded. However, fetching data is only the beginning of what
happens on a web page, which is why complex React applications usually require the use of
additional libraries for state management, routing, and interaction with an API.

5.5 Material-UI
Material design is a design language that Google created to have consistency across
multiple different applications [7].
Material-UI is a library that provides components which are designed according to Material
Design and can be used in React.js applications as building blocks. It also provides user
interface support across multiple devices [8].

28

5.6 GitHub
GitHub is a web-based hosting service for version control using Git. It provides access
control and several collaboration features such as bug tracking, feature requests, task
management, and wikis for every project. We used it for version control and to host our
source code [9].

5.7 Heroku
Heroku is a cloud platform as a service (PaaS) supporting several programming languages.
Heroku supports Java, Node.js, Scala, Clojure, Python, PHP, and Go. For this reason,
Heroku is said to be a polyglot platform as it has features for a developer to build, run and
scale applications in a similar manner across most languages. We used Heroku to deploy
our application as it supports Node.js and React.js and can be deployed using only a few
commands [10].

5.8 Axios
Axios is a promise based HTTP client for the browser and Node.js [11]. Axios has a
wide range of browser support and can be used with ease. Additionally, it supports
send custom requests and cancel prior requests on demand which was very useful
for our purposes.

5.9 React-Select
React Select is a flexible and beautiful select input control for React.js with multiselect,
autocomplete, async and creatable support [12]. React Select is very easy to use especially
for multiple selections and has a nice and clean user interface which requires almost no
customization.

5.10 React-Google-Maps
React Google Maps is a library which provides React components to wrap Google Maps
JavaScript API [13]. It provides a nice looking Google Maps component while doing basic
but sufficient things such as marking on the map, returning the coordinates and searching for
addresses.

5.11 React-FontAwesome
React Font Awesome is a library which provides React components for widely used free
Font Awesome icons [14]. React Font Awesome makes using multiple icons on different
pages very easy with their icon library feature.

29

6. Final Status of the Project
Currently, Musync can be found at ​https://musync-app.herokuapp.com/​. To use the
application, user needs to give us the permission to reach his/her location. If permission is
given, user is going to see places close to him/her. User can connect one of those places by
entering its pin code which is set by owner of the place. User can search and add songs to
playlist of the connected place. However, genre of the added song must be one of the
preferred genres of the place. Preferred genres are set by the place owner.

In a place, next song to play is determined by voting. Each time, a place has 3 voted songs.
The song with highest vote is played next.

User can register to Musync with his/her Spotify account. If user does so, some of his/her
favourite songs at Spotify are automatically added to playlist of the place he/she connects.
These songs also have to be from one of the preferred genres of the place. A user does not
have to register for adding songs manually.

A user can create a place. To do so, he/she must connect a Spotify account. User can
choose name, pin code, preferred genres and location of the place. These settings can be
changed later.

User can see all places registered to Musync on a map. On this map user can see preferred
genres of these places and currently playing songs there. User can also receive place
recommendations based on the genres of his/her previously visited places.

30

https://musync-app.herokuapp.com/

References
[1] IBM, "UML - Basics," June 2003. [Online]. Available:

http://www.ibm.com/developerworks/rational/library/769.html. [Accessed 08 May 2019].

[2] IEEE, "IEEE Citation Reference," September 2009. [Online]. Available:

https://m.ieee.org/documents/ieeecitationref.pdf. [Accessed 08 May 2019].

[3] Foundation, Node.js. Node.js. Accessed May 09, 2019. https://nodejs.org/en/.

[4] "Node.js Web Application Framework." Express. Accessed May 09, 2019.

https://expressjs.com/.

[5] "The Most Popular Database for Modern Apps." MongoDB. Accessed May 09, 2019.

https://www.mongodb.com/.

[6] "React – A JavaScript Library for Building User Interfaces." – A JavaScript Library for

Building User Interfaces. Accessed May 09, 2019. https://reactjs.org/.

[7] "Homepage." Material Design. Accessed May 09, 2019. https://material.io/.

[8] "The World's Most Popular React UI Framework - Material-UI." Material. Accessed May

09, 2019. https://material-ui.com/.

[9] "Build Software Better, Together." GitHub. Accessed May 09, 2019.

https://github.com/about/.

[10] "'heroku' Tag Wiki." Stack Overflow. Accessed May 09, 2019.

https://stackoverflow.com/tags/heroku/info.

[11] Axios. "Axios/axios." GitHub. May 07, 2019. Accessed May 09, 2019.

https://github.com/axios/axios.

[12] "Select." React. Accessed May 09, 2019. https://react-select.com/home.

[13] React Google Maps Style Guide. Accessed May 09, 2019.

https://tomchentw.github.io/react-google-maps/#introduction.

[14] FortAwesome. "FortAwesome/react-fontawesome." GitHub. January 15, 2019.

Accessed May 09, 2019. https://github.com/FortAwesome/react-fontawesome.

31

